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1. Introduction 
In this report we summarized our final project for the course Advanced Topics in 

Computer Science - On Multi-A(ge)nt Systems by Professor Alfred M. Bruckstein , 

Computer science department, Technion – Israel institute of technology. Our project 

dealt with the problem of Continuous Gathering with Finite Visibility and Bearing 

Only. As part of the project we created a simulator described in section 2, as well as 

a brief of the theoretical background of the problem (section 3). 

 

 

2. Simulator User Manual 
In this section, we present the different features implemented as part of the 

Continuous Gathering with Finite Visibility and Bearing Only Simulator. The simulator 

was implemented using Net Logo software (version 6.1.1). 

After activating the simulator, the following screen should be presented. 

 

The opening screen allows user to setup a gathering scenario and then execute the 

gathering algorithm described in the next section (2). We shall brief each button in 

the simulator. 

Setup – The setup button initializes and display a gathering scenario based on the 

selected features. 

 



Number of Agents – The number of agent text box allow user to select the amount 

of agents in the gathering problem.  

 Edit Display – The Edit Display button allows user to change the displayed features 

on screen (in addition to the agents). It is recommended to push this button and use 

the following features in order to build interesting scenarios. 

Show Visibility Range - The show Visibility Range button allows user to see each 

agent visibility range (V). 

 

 

Radius of Visibility – The Radius Of Visibility slider enable user to change the 

visibility radius of the agents 

 

Show Visibility Graph - The show Visibility Graph button Display the visibility graph, 

enable the user to check the graph is connected. In the following figure, the graph 

not connected. 



 

Pen Mode – the Pen mode button display each agent trajectory on screen 

Go! – The Go button initiate the gathering process. In the next figure you can see the 

successful finish of such process using the pen mode. 

 

Drag n' Drop – The simulator allows the user to drag and drop agent during the 

gathering process  (after Go!) or during the setup process ( after pushing Edit 

Display). In the following figure, you can see how we took a single agent after 

gathering, drag it around the screen and make the other agent chase it. Interesting 

to see the chain pursuit proof concept – the agents route (inner line) is shorter than 

the dragged agents route (outer line). 

  



3. Theoretical Analysis 
In this section we bring some theoretical explanation for the agents' behavior in our 

simulator. This analysis is a brief version of full analysis described in [1]. 

We assume that every agent has information only about the relative bearing 

direction to its neighbors within a visibility range V (but cannot measure relative 

distances). First, we present the gathering process based on bearing-only sensing 

with limited visibility in the continuous time framework (section 3.1). Next, we 

present a theoretical proof for gathering under connected neighborhood graph 

(section 3.2). 

 

3.1. Model Dynamics 
Assume each agent moves with a constant speed σ unless it stops, according to the 

following dynamic law: 

 

Where: 

 

the points 𝑝𝑖𝑅(𝑡) 𝑎𝑛𝑑 𝑝𝑖𝐿(𝑡) being the positions of the extreme right and left agents 

defining the minimal angular sector containing all neighbors of agent i. This sector 

angle will be denoted by 𝜓𝑖 =  ∠𝑝𝑖𝑅 𝑝𝑖 𝑝𝑖𝐿.  

 and  are unit vectors so that: 

  

Informally, agent i moves at a constant velocity σ along the bisector of 𝜓𝑖(𝑡), unless 

 𝜓𝑖(𝑡)  ≥  𝜋 then agent i doesn’t move (see the following figure 21 from [1]). 



 

 

3.2. Gathering proof 
In this section we give a summarize proof of the following theorem (theorem 8 

in [1]): 

Theorem 8: For an initial constellation of a connected neighborhood graph, all 

the agents of system S7 converge to a point in finite time.  

Proof. We shall prove Theorem 8 using three steps:  

Step 1: Any two neighbors of system S7 will remain neighbors (Lemmas 15 

and 16).  

Step 2: At any time t the convex-hull of system S7 is contained in its previous 

(Lemma 17).  

Step 3: While the convex-hull of the agents locations has a perimeter greater 

than zero, the perimeter decreases at a finite speed (Lemma 18). 

 These three lemmas prove that system S7 converges to a point in finite time 

as claimed. 

 

3.2.1. Step 1: Any two neighbors of system S7 will remain neighbors 
We shall give some informal intuition for lemmas 15 and 16 proved in [1]. 

Let us first define an allowable region ARi(t) where each agent i can move 

without losing any existing neighbor, i.e. its distance from every existing 

neighbor will stay smaller than V . 



The current allowable region, where agent i may move without losing any of 

its existing neighbors, is denoted by (see the following figure 22 from [1]): 

 

Lemma 15. If all agents move to an arbitrary location inside their allowable 

regions they will not lose any of their neighbors. 

Proof. See [1] 

Lemma 16. Motion according to the dynamics rule ensures that all agents 

move into their allowable regions. 

Proof. See [1],  

Intuitively by moving according to the described dynamic, agent takes a 

step only if it gets him closer to all its neighbors. Therefore, it is 

impossible to loose the visibility graph connectivity. 

  



3.2.2. Step 2: At any time t the convex-hull of system S7 is contained 

in its previous  
 

Lemma 17: Let CH(P(t)) be the convex-hull of agents’ positions in system S7 

at time t. Then for all t ≥ 0 and ∆t > 0 

CH(P(t + ∆t)) ⊆ CH(P(t)) 

Proof. By the dynamic law each agent moves along the bisector of 𝜓𝑖(𝑡),

𝑤ℎ𝑒𝑟𝑒 𝜓𝑖(𝑡) is the angle of the smallest wedge containing all the neighbors of 

agent i. And since there is no agent located outside the convex-hull of the 

system, no agent moves out of the convex-hull. 

 

3.2.3. Step 3: While the convex-hull of the agents locations has a 

perimeter greater than zero, the perimeter decreases at a finite 

speed  
Lemma 18. If the graph topology of system S7 is connected and the perimeter 

of its convex-hull is greater than zero, then the perimeter of its convex-hull 

decreases at a rate bounded away from zero. 

Proof. We shall show that the perimeter of CH(P(t)) drops at a strictly positive 

rate as long as the diameter of the system is strictly positive. 

The proof is based on the dynamics of the agent (or agents) s, located at a 

current sharpest corner of the system’s convex-hull. Let 𝜙𝑠 be the inner angle 

of this corner. 

The sum of angles of any convex polygon is 𝜋(𝑚 − 2), where m is the number 

of its corners, therefore the angle of its sharpest corner 𝜙𝑠is at most 𝜋(1 −

 2 𝑚 ). System S7 contains n agents, hence the system’s convex-hull has m ≤ 

n corners. We denote the upper limit on the sharpest corner of the convex-hull 

by 𝜙∗, so 

 

Define L(P(t)) as the perimeter of CH(P(t)) and 𝑙𝑖(𝑡) as the length of the 

convex-hull side connecting corners i and i + 1 at time t. 

Let 𝜙𝑖(𝑡) be the angle of corner i of CH(P(t)), let 𝛼𝑖(𝑡) denote the direction of 

motion of the agent located at corner i relative to the direction of corner i+1, 

and let 𝑣𝑖(𝑡) be the speed of the agent located at corner i (as shown in Figure 

25). 



 

Let 𝑣𝑠(𝑡), 𝜙𝑠(𝑡) 𝑎𝑛𝑑 𝛼𝑠(𝑡) be the relevant values associated with agent s. 

Since 𝑣𝑠  = ∥ 𝑝˙𝑠(𝑡) ∥ is positive and bounded away from zero by the assumed 

rule of motion (47), and by Lemma 18 we have 𝛼𝑖(𝑡)  ≤  𝜙𝑖(𝑡)  <  𝜋 we have 

 

Hence, the perimeter decreases at a rate of at least 𝜎 cos2(𝜙∗/2)  proving 

Lemma 18 

To prove Theorem 8 we have by Lemma (18) that the length of the perimeter 

of the convex-hull of system S7 decreases at a bounded away form zero rate, 

therefore it necessarily converges to a point in finite time as claimed. 

  



References 
[1] - Barel A., Manor R., and Bruckstein A.M ,called "COME TOGETHER: MULTI-

AGENT GEOMETRIC CONSENSUS (GATHERING, RENDEZVOUS, CLUSTERING, 

AGGREGATION)" 

https://freddy.cs.technion.ac.il/wp-content/uploads/2018/02/131.-come-together.pdf
https://freddy.cs.technion.ac.il/wp-content/uploads/2018/02/131.-come-together.pdf
https://freddy.cs.technion.ac.il/wp-content/uploads/2018/02/131.-come-together.pdf

