
Intelligent Systems Simulation Project
(236754)

Two-Robot Source Seeking with Point

 Measurements Algorithm

 Submitted by:

 Omri David

 Eran Goldemberg

 Under the guidance of: Yotam Elor

Under the supervision of: Prof. Alfred M. Bruckstein

 November, 2011

Table of Contents

Problem definition………………………………….…………...3

The Algorithm..……………………….…………..….…………..4

Classes description……………………………………………..5 - 6

Special Features and Difficulties…………………………..7 - 9

Using the Simulator……………………………………….……10 - 13

 The user menu and explanations

 Displays

Problem definition

In this project we create a simulator of two robots reactive gradient following

algorithm using point measurements was presented.

Using indirect motion based communication.

The robots compare point measurements and drift with the gradient.

The simulator have two modes of spreads: a peak mode and a gradient follow by

the x axis.

In addition the user can define some manipulations in the robot's world.

He can define the parameters of a linear function and a level of noise that define

the distance between the robots.

The User can control on the speed and the zoom of the robots and see their

locations in a graph.

The simulator provides a Solution based on the paper “Two-Robot Source

Seeking with Point Measurements” by Yotam Elor and Alfred M. Bruckstein.

The Algorithm

The system comprises two robots 1r , 2r . Each robot has a global location. The

distance between the robots is denoted by D and given by 12 XXD −= .

The center of mass point is given by)(
2

1
21 XX + . We define)(tX i as the location

of robot ir at time t .

Let)(Xzi be the value of the scalar function at point X (∞<<)(0 XZ i) .

Let)(ii zfD = be the desired distance for robot ir .

While executing the algorithm, robot ir attempts to keep a distance iD from

robot jr .

The function f is user designed and affects the ultimate system behavior.

When executing the proposed algorithm, each of the robots move according to a

sum of two velocities:

)(11201 VVvX += →
ɺ

)(22102 VVvX += →
ɺ

Where 0v is normalization constant, By changing the velocity ijV → , robot ir seek

to maintain the desired distance from jr via:

ijjiij uAV ˆ⋅=→

}1,1,0{)(−∈−= iji DDsignA

Let ijû be the following unit vector DXXu ijij /)(ˆ −= .

Where the function)(xsign equals 1 if 0>x . 0 If 0=x and -1 if 0<x . Hence jiA

is the sign of the velocity:

If iDD > then 1=jiA so ir is attracted toward jr .

If iDD < then 1−=jiA so ir is being repelled from jr .

If the robots would move only according to the velocities 12→V and 21→V , they

did forever occupy a line. To avoid that, the velocities 1V and 2V which cause the

robots to orbit each other are introduced. upiji uuV ˆˆ ×= (upû is the unit vector

which point up).

The user can define a noise sensors for)(⋅z : zii Nzz +=ˆ .

zN is a random variable represent the measurement error.

Main Classes

- Actor
This is an abstract class, represents an object that has action and drawing

methods.

- Chart
Holds the variables and lines that create a chart that presents the pheromone

value of each robot and the pheromone of the CM.

- Constant
Holds the constants required for the simulator.

- GradientFollow
Responsible for the robot’s movement according to the algorithm. It holds the

robot’s current position, and is responsible for the move.

While executing the algorithm, robot ir attempts to keep a distance iD from

robot jr .

- Graph
Holds a list of pheromone values for each robot and for the CM.

- Ground
Responsible for creating the array named 'Markings' of the pheromone value for

each location in world. Values are determined by the chosen spreads.

- Menu
Responsible for all the buttons, text boxes and scroll bars for the user. The user

can select the spread he want, the manipulations of the world, the F function, the

noise, the zoom and the speed of the robots.

- My list
A class that extends a list of actors, and implements the "Actor" methods for a

list of actors.

- My robot
My robot is an Actor (by extending it). This class represents a robot in the world,

that has coordinates, radius, and his own drawing method.

- Obstacles
Represents the obstacles that delimit the world. It extends Actor, and

implements its own draw method.

- SimulatorApplet
This is the main class. It implements runnable. In initialization the world and

menu objects are created and initialized. Then a new thread is created and that

thread invokes the run method.

- View
This class is responsible for the functionalities of dragging objects, and zooming

on the world.

- World
This class represents the area that the robots are located at. The class

Implements the MouseMotionListener, MouseListener and MouseWheelListener

Interfaces. Thus it has methods to catch events from mouse and keyboard, for

Handing input from user or mouse actions such as dragging or manipulating.

- WriteValue

This class extends TimerTask and has a Graph object.

Each time unit the pheromone values of the two robots and center of mass are

saved in the lists in the graph object. In other words, this class maintains the

history of pheromone values, by which the graphs will be drawn later.

Special Features and Difficulties

Noise Level

We wanted the user to have option for adding a Gaussian noise to the motion of

the robots. The goal of this parameter is to add a random value to the motion of

the robots that represents the measurement error.

We used the 'nextGaussian’ method in the Random Class, which we weren't

really familiar with, and had to look for it.

The function Returns the next pseudorandom, Gaussian ("normally")

distributed double value with mean 0.0 and standard deviation 1.0 from this

random number generator's sequence.

The user defines the noise value he wants. This value represents the expected

variance he wants for the noise. The calculation is to take the standard deviation

and multiply it by the random number. We add the result to the sample of the

pheromone level according to the robot’s location.

Random rand = new Random();

double next = rand.nextGaussian();

value = Ground.markings[index]+Math.sqrt(world.ground.mNoiseLevel)*next;

0.0
2
=σ

1.0
2
=σ 5.0

2
=σ

Creating a graph for sampling the pheromone level of the robots

An important feature in the simulator is the ability to see the pheromone level of

the robots according to the time.

Therefore we decided to add a mechanism of graph that will present the

pheromone level of each robot for each time unit.

We were thinking how to save the pheromone values of each robot for every

time unit. We then decided to create a database that will save these values so

we'll be able to draw the desired graphs according to the stored values.

First, we created a class called ‘Graph’ which has three double Linked List: Two

lists that save the pheromone value for each robot, and one list that saves the

pheromone value of the CM.

Second, we created class called ‘WriteValue’.

In each time unit, the pheromone values of the two robots and center of mass are

saved in the lists in the graph object.

Finally, in the ‘Chart’ class we eventually create the graph. It creates the axes and

the text for the axes. It uses the saved values for the robots and the CM and

adding line between each two adjacent points.

It was needed to do the graph by default spaces between the points. Therefore it

takes the expected width and height and calculates the expected spaces in

variable named ‘delta’.

One difficulty we had in creating the graph is that we didn't know that the axis

grow down and not towards up. (At first we got graphs going down instead going

up so we saw the graph is symmetric with the function y=0.5 and then we

understood what the problem was).

Another difficulty we had is that we had to design a Y axis that fits the scale of

0.0 to 1.0. So it demanded great mathematic skills in order to find the exact

location of the 0.25, 0.5, 0.75 and 1.0 numbers on the axis.

We also had to find a constant to add to the drawing function so that the graphs

will start to be drawn from the correct height in the graph.

Graph for example
F function 0.5x+0.5 in peak mode

Manipulation Mode

An important feature in the simulator is the ability to add painting of the world

by the user, which can change the pheromone level in the painted area.

One difficulty we had was how to determine the scroll's colors.

It was necessary to make sure that the chosen colors would not be confusing the

user. For example, instead of purple we had shades of green in previous version.

That wasn't so good because when we painted green areas with blue color, we

got lighter green in the edges- which was quite confusing.

Therefore we work only with shades of blue and red.

Another difficulty we had was to get smooth painting. In a previous version we

used a squared pattern; each pixel was painted in the same color, which was the

new chosen color to paint. This wasn't a good solution, so we had to change it

and come up with a better idea. We chose a Gaussian pattern in the size 21x21,

where the center of the pattern is the area selected with the mouse, and his 120

neighbors cells are painted according to a formula: we take into account the

current color and the new color that is chosen, and each one of the two colors is

multiplied by a weight. The weight is heavier for the new color for cells closer to

the selected area. The weight is heavier for the old color for cells that are farther

than the selected area. In that way, we got painting much smoother and neater.

The Simulator

1 Spreads – The user can choose between “X grad” mode and “Peak” mode for the

values in the world’s locations.

2 Manipulation Mode- By select the manipulation mode, the user can select a

color in the color scroll bar and paint in the selected color on the world

pheromone’s values.

3 F function – The user can define what will be the linear function that control

the robot’s algorithm. He can choose what will be the derivation and intersection

with the y axis.

4 Noise Level- The user can define a noise for the value which the robot sample.

The recommended noise is between 0.001 to 1.

5 Create- The Create button initiate the world according the parameters of the

spreads, F function and noise level and randomize a location for the robots .

Run/Pause – The Run button cause the robots starting their move according the

algorithm. By Pressing the Pause button the robots will freeze their motion.

6 Speed- Control the speed of the motion.

7 Zoom- Control the zoom in/out of the world.

8 Color – Control the color for the manipulation mode.

2

4

7

1

2

4

3

5

6

7

8

Peak Mode

World with manipulations

Playing with Zoom and speed

Graph in spread of peak

With function 2x+10 and noise of 0.1

