
Intelligent Systems Simulation ProjectIntelligent Systems Simulation ProjectIntelligent Systems Simulation ProjectIntelligent Systems Simulation Project

(236754)(236754)(236754)(236754)

A thermodynamic Approach to the Analysis ofA thermodynamic Approach to the Analysis ofA thermodynamic Approach to the Analysis ofA thermodynamic Approach to the Analysis of

MultiMultiMultiMulti----Robot Cooperative LocalizationRobot Cooperative LocalizationRobot Cooperative LocalizationRobot Cooperative Localization

Submitted by:Submitted by:Submitted by:Submitted by:

Amir Keren

Nimrod Eldan

Under the guidance ofUnder the guidance ofUnder the guidance ofUnder the guidance of Yotam ElorYotam ElorYotam ElorYotam Elor

Under the supervision ofUnder the supervision ofUnder the supervision ofUnder the supervision of Prof. Alfred M.Prof. Alfred M.Prof. Alfred M.Prof. Alfred M. BrucksteinBrucksteinBrucksteinBruckstein

March, 2011March, 2011March, 2011March, 2011

2

Table of ContentsTable of ContentsTable of ContentsTable of Contents

Introduction…………………………………………….3

New Features and Fixes…………………………………5

Simulator Description…………………………………..6

Implementation Design…………………………………7

Main Classes....………………….…………………7

Algorithms…………………………………………8

Implementation Platform…………….…………..…….12

Using the Simulator……………….…..……………….12

 Parameters and Buttons…………………………...12

 Matrix and Graphs...…...13

Screenshots…………………….………………………15

3

IntroductionIntroductionIntroductionIntroduction

Our project presents a simulator based on a new approach to the

simultaneous cooperative localization of a group of robots capable of sensing

their own motion and the relative position of nearby robots. In addition,

this project is an enhancement of a project which was handed by Oshrat

Bonker and Ariella Avramovich on August 2010.This version includes new

features and some bug fixes.

The simulator provides a solution based on the paper ‘‘A Thermodynamic

Approach to the Analysis of Multi-Robot Cooperative Localization under

Independent Errors’’ by Yotam Elor and Alfred M. Bruckstein.

Localization is the task of estimating the robot location and has been

identified as one of the key problems in robotics. The localization problem

can be roughly divided into two variants: In the first variant the robots can

estimate their location by sensing their surroundings and comparing it with

information they possess about the environment, while in the second

variant, the robots have no such capabilities. Instead, every robot knows its

initial location and updates its location estimation [1][1][1][1].

In this project we are focusing on the second variant. In the second variant

of the localization problem it is assumed that, initially, every robot knows its

location and uses audometry in order to track it (dead-reckoning) [[[[1111]]]].

However, due to noisy sensor readings, in time, the estimation diverges from

the robot real location. When a group of robots perform localization, the

localization error can be reduced by sharing information between them [[[[1111]]]].

4

The goal is not to derive hard lower or upper bounds, but rather to

characterize the robots expected behavior and in particular, to predict the

expected localization error [[[[1111]]]].

A preview of how the simulator looks embedded in a web page

[1] [1] [1] [1] "A Thermodynamic Approach to the Analysis of Multi-Robot Cooperative Localization

Under Independent Errors", Yotam Elor and Alfred M. Bruckstein, Faculty of Computer Science

and the Goldstein UAV and Satellite Center.

5

New Features and FixesNew Features and FixesNew Features and FixesNew Features and Fixes

As mentioned in the introduction, our project is an enhancement of a

project which was handed by Oshrat Bonker and Ariella Avramovich on

August 2010, and it includes new features and bug fixes.

New features New features New features New features

New map typeNew map typeNew map typeNew map type --- in addition to the regular map type, the user can choose to

display the robots' false location map as a Gaussian map. (More on the

Gaussian map in the Algorithms section).

Two new error modeling typesTwo new error modeling typesTwo new error modeling typesTwo new error modeling types --- in addition to the independent model,

the user can choose between compass model and full audometry model.

(More on compass model and full audometry model in the Algorithms

section).

New EnvironmentNew EnvironmentNew EnvironmentNew Environment - the user can choose torus environment. This

environment has no walls.

Landmark featureLandmark featureLandmark featureLandmark feature --- enables a spot on the map which upon arriving to that

spot causes the robots to initialize their location calculation mistakes.

Bug fixesBug fixesBug fixesBug fixes

Display refresh problemDisplay refresh problemDisplay refresh problemDisplay refresh problem --- when running the project as a java applet,

minimizing and maximizing the program would have caused display

problems.

Mean error graph resize bugMean error graph resize bugMean error graph resize bugMean error graph resize bug --- now performs resize correctly.

Panel buttons reorganizedPanel buttons reorganizedPanel buttons reorganizedPanel buttons reorganized ---- buttons are now organized in a more user

friendly way.

6

Simulator DescriptionSimulator DescriptionSimulator DescriptionSimulator Description

The simulator allows the user to choose one of several different

environments and to set different parameters such as number of robots, map

type, the covariance of the localization error, animation speed control and

others. According to the user preferences, the robots will patrol the selected

environment and map how the area is constructed, but due to noisy sensor

readings the mapping has errors and deviation.

The user is able to reduce these errors according to three different error

models.

Whenever two robots are within sensing and communication range, they

average their location estimations and by that reducing their errors.

In addition, there is a graph of the covariance of the localization error of any

two robots, and a graph of the robots mean error, both will be explained

later.

Some of the environments of the simulator

7

Implementation DesignImplementation DesignImplementation DesignImplementation Design

Main classesMain classesMain classesMain classes

The class CreateGraph contains all the information about the environment

the robots are in and the environment mapping, and is also responsible for

displaying it correctly on the screen. The class contains an array of robots

and three bi-dimensional arrays, one for the environment itself, one for the

mapped environment and one for the Gaussian map. This class is

responsible to invoke all the robots to make a single step and also to invoke

the EA algorithm. In addition, the Chart2 class uses some of CreateGraph

information to draw the mean error graph.

The class Robot contains for each robot information about its location.

The information includes the real location of the robot and the false

location. The real location is the actual location the robot is at, and the false

location is the location the robot thinks it's at, as a result of the errors of the

sensor that are accumulated to the real location. The real and false locations

are calculated according to algorithms that are described in the following

section.

The class covarianceMatrix includes all the information about the covariance

matrix. It contains a bi-dimensional array which represents the covariance

matrix. With each step of the robots, we add 2

0σ to the main diagonal of the

matrix, and if the EA algorithm is applied, then every time two robots meet,

we average their rows and columns by updating this matrix. When we draw

this matrix on the screen, we draw every cell of the matrix in a color between

black and white. The more white the cell[i][j] is, the more dependent robots

i and j are. The Chart class uses this information to draw the covariance

graph.

8

AlgorithmsAlgorithmsAlgorithmsAlgorithms

All algorithms are based on Yotam Elor and Alfred M. Bruckstein article: "A

Thermodynamic Approach to the Analysis of Multi-Robot Cooperative

Localization Under Independent Errors", Faculty of Computer Science and

the Goldstein UAV and Satellite Center.

Robots movement - In the class CreateGraph we initiate for each robot its

preliminary location, meaning its iX and iY coordinates and the initial

angle iφ . Robots speed is set to be 0V . With every step, the robots' real

location is updated according to the following::::

() 0
(1) cos(())
i i t i
x t x t vφ+ = + ⋅

() 0
(1) sin(())
i i t i
y t y t vφ+ = + ⋅

If a robot collides with a wall we randomize a new angle for it.

Due to noisy sensor readings there is an error in each robot's location. Thus,

we also calculate the "false" location, meaning the location where a robot

thinks it is at. We mark the false location '

iX and '

iY

Our simulator presents three different error models:

Independent ModelIndependent ModelIndependent ModelIndependent Model

The user sets the parameter 2

0σ which affect z .
2

0~ (0,)z N σ implies that z is a random variable distributed normally in one-

dimension with zero mean and variance of 2

0σ .

0
'(1) '() cos(())

xi i i i
x t x t t v zφ+ = + ⋅ +

0
'(1) '() cos(())

xi i i i
y t y t t v zφ+ = + ⋅ +

Where 2

0~ (0,)iz N σ

Compass ModelCompass ModelCompass ModelCompass Model

The user sets the parameters 2

vσ which affect z and 2

cσ which affectw .

9

2~ (0,)vz N σ and 2~ (0,)cw N σ implies that ,z w are random variables

distributed normally in one-dimension with zero mean and variance

of 2 2,v cσ σ accordingly.

0
'(1) '() cos(())

xi i i i
x t x t t v zφ+ = + ⋅ +

0
'(1) '() cos(())

xi i i i
y t y t t v zφ+ = + ⋅ +

Where 2

0~ (0,)iz N σ

()
' (1) '
i i t i
t wφ φ+ = +

Where 2~ (0,)i cw N σ

Full Audometry ModelFull Audometry ModelFull Audometry ModelFull Audometry Model

The user sets the parameters 2

vσ which affect z and 2

tσ which affect w .
2~ (0,)vz N σ and 2~ (0,)cw N σ implies that ,z w are random variables

distributed normally in one-dimension with zero mean and variance

of 2 2,v tσ σ accordingly.

0
'(1) '() cos(())

xi i i i
x t x t t v zφ+ = + ⋅ +

0
'(1) '() cos(())

xi i i i
y t y t t v zφ+ = + ⋅ +

Where 2

0~ (0,)iz N σ

()' (1) ' i
i i t i

d
t w

dt

φ
φ φ+ = + +

Where 2~ (0,)i tw N σ

Error AveragingError AveragingError AveragingError Averaging (EA)(EA)(EA)(EA)

We are interested in the error ()ie , which is the distance between the robot's

real location to the robot's false location.

ɶ 'x x x= −
ɶ 'y y y= −

Therefore the error is calculated as follows:

ɶ ɶ2 2() ()ii i
e x t y t= + .

EA allows us to fix the errors of the robots. Each two robots that are within a

radius r average their errors and update their false location accordingly:

10

(') (')
' '

2

i i j j

i i

robot robot robot robot

robot robot

x x x x
x x

− + −  
= +  

  

(') (')
' '

2

j j i i

j j

robot robot robot robot

robot robot

x x x x
x x

− + −  
= +  

  

The same calculation for y.

Covariance MatrixCovariance MatrixCovariance MatrixCovariance Matrix

 In the class covarianceMatrix we handle a bi-dimensional matrix. This

matrix is the covariance matrix of the localization errors of the robots at time

t. At start, the matrix is initiated to zero.

When no correction mechanisms are applied, the covariance of the

localization error of any two robots is zero. To be precise, for any

i j≠ () 0ij tσ = .

 The components on the main diagonal of the matrix grows linearly in time

for any i, 2 2

0()i t tσ σ= ⋅ .When error correction mechanisms are applied, the

process of updating the covariance matrix as a result of a meeting between

robot i and robot j can be carried out by averaging rows i and j of the matrix

and averaging columns i and j.

The evolution of the covariance matrix, when the robots follow EA, can be

described as follows. Initially: covariance matrix = 0. Then, as the robots

move, the values on the main diagonal of the matrix start growing. Due to

meetings between robots, error from the main diagonal spread to the rest of

the matrix. Finally, a semi-steady state is achieved in which the rate of

removing error from the main diagonal almost equals the rate of adding

error to it.

GraphsGraphsGraphsGraphs

The simulator presents two statistical graphs. In the two graphs the X axis

represents the time. In the covariance graph the blue dots represent the

average of the main diagonal of the covariance matrix while the red dots

represent the average of the whole matrix.

11

The sum value of the main diagonal is divided it by number of robots. Let's

call it diagonalAvg. We calculate now the main diagonal deviation. For each

robot sum up 2

,()i jmatrix diagonalAvg− . Finally we divide it with the number

of robots and square root the result. This is the deviation of the main

diagonal. We do the same thing for the whole matrix. We sum up all the

components of the matrix. Let's call it sum. Then we calculate

2(_ _)

sum
matrixAvg

number of robots
= which is the matrix average.

In order to calculate the deviation of the whole matrix, for each cell in the

matrix we add 2

,()i jmatrix diagonalAvg− to graphSum. The deviation of the

graph will be
2(_ _)

graphSum

number of robots
.

In the mean error graph the green dots represent the mean error of the

robots, and the calculating of the average error and its standard deviation is

done the same as described above.

Gaussian mapGaussian mapGaussian mapGaussian map

In addition to the regular display, a Gaussian map has been added to give a

different perspective of the map created by the robots as they collide with

the obstacles laid out for them.

The Gaussian map is created using 10x10 matrices which normalize the

values of the regular map using a Gaussian distributed variable, thus creating

a "smeared" look of the hits to emphasize the locations hit more frequently

than others.

12

Implementation PlatformImplementation PlatformImplementation PlatformImplementation Platform

The project was implemented on Java Applet platform, using Eclipse IDE

for Java Developers.

Using the simulatorUsing the simulatorUsing the simulatorUsing the simulator

In the right panel of the applet there are buttons and parameters that enable

the user to change and control the simulation.

Parameters and ButtonsParameters and ButtonsParameters and ButtonsParameters and Buttons

EnvironmentEnvironmentEnvironmentEnvironment - change the environment the robots are in. Available

environments are: a square room, a room in the shape of a ring, a room

consists of 9 rooms, a room with walls and a Taurus room. (This change will

be applied when the after press the Create button).

Number of RobotsNumber of RobotsNumber of RobotsNumber of Robots - choose between 1 to 250 robots. (This change

will be applied when the after press the Create button).

Sigma, sigmaV, sigmaC, SigmaTSigma, sigmaV, sigmaC, SigmaTSigma, sigmaV, sigmaC, SigmaTSigma, sigmaV, sigmaC, SigmaT --- according to the error model,

the user can change the mean for the robots' location and\or

angle errors which are random variables distributed normally with

a zero mean and variance of Sigma, sigmaV, sigmaC, SigmaT

according to the error model. (This change will be applied

when the after press the Create button).

Error TypeError TypeError TypeError Type --- switch between the three different error models:

 Independent, Compass and Full Audometry.

CreateCreateCreateCreate --- After setting the parameters, pressing this button creates a new

simulation.

Play/PausePlay/PausePlay/PausePlay/Pause --- After pressing the Create button, pressing the Play button starts

the simulation. Pressing again pause the simulation and so forth.

13

Map TypeMap TypeMap TypeMap Type - switch the display between normal and Gaussian.

Perform EAPerform EAPerform EAPerform EA ---choose whether to apply the algorithm to average

the robots' errors or not. (This change will be applied immediately).

LandmarkLandmarkLandmarkLandmark --- activates and displays a fixed point on the map that

initializes the error averaging history for every robot within a

certain radius from it. (This change will be applied immediately

and can only be activated with EA on).

Simulator SpeedSimulator SpeedSimulator SpeedSimulator Speed ---control the animation speed (This change will be

 applied immediately).

Matrix and GraphsMatrix and GraphsMatrix and GraphsMatrix and Graphs

Beneath the maps there are the covariance matrix, the covariance graph and

the mean error graph.

Covariance MatrixCovariance MatrixCovariance MatrixCovariance Matrix --- The matrix is of size m*m, where m is the number of

robots. Every cell of the matrix is shown in a color between black and white,

while the more white the cell[i][j] is, the more dependent robots i and j are.

14

Covariance Covariance Covariance Covariance GraphGraphGraphGraph - The X axis stands for the number of cycles passed since

the start of the simulation. The Y axis stands for the covariance.

The blue points represent the average of the main diagonal of the covariance

matrix, and the blue lines represent its standard deviation.

The red points represent the average of the rest of the covariance matrix, and

the red lines represent its standard deviation.

Mean Error Mean Error Mean Error Mean Error GraphGraphGraphGraph - The X axis stands for the number of cycles passed since

the start of the simulation. The Y axis stands for the robots error.

The green dots represent the mean error of the robots while the green lines

represent its standard deviation.

15

ScreenshotsScreenshotsScreenshotsScreenshots

Running the simulator in 9 rooms environment without EA:

Running the simulator in Walls environment with EA:

16

Running the simulator in Walls environment with EA, Landmark and

Gaussian map:

Running the simulator in Torus environment with EA and Landmark:

