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1) Introduction 

In this document we will analyze several runs on various domains using Mark-Ant-Walk algorithm for 

robust and efficient covering of continuous domains by antlike robots. 

We have written a simulator that simulates the movement of robots on given domains according to the 

algorithm we discuss in this project, using different parameters depending on our purpose, the 

simulator helps us in outputting result functions that reflect the running time over various areas, we can 

also gain a graphical documentation of the robot’s movement and lots of options depending on our 

need. 

The analyzing is done by studying the several result functions of different domains, we will also present 

statistics of several runs of the simulation, altering the problem parameters (different domains, different 

number of robots, etc...) and drawing conclusions on our points of research. 

1.1 Objectives & Motivation 

Our main goal in this article is to study the influence of the problem parameters on the movement of 

the robot and the covering time. 

We will be looking for methods to finding the most appropriate parameters that reflect approximately a 

real behavior of the agent(s) in our simulator. 

The first problem to solve is representing circles by approximating each covering step of the robot to a 

real circuit then finding the appropriate radius that reflects this behavior and work with it (this problem 

and solution will be discussed later elaborately). 

After solving the problem discussed above, we are ready to experiment the behavior of the agent(s) on 

several areas with or without forbidden areas, we will base our research on several parameters; 

covering time on variable sizes, shapes and number of agents, comparing between them and presenting 

statistics of several runs. 

The last part before we sum our conclusions will include a proposal of experiments we came up with 

that change the functionality of the algorithm and comparing its results to the original version of the 

algorithm. 

1.2 The Simulator 

The simulator was programmed in C++; it was divided into two main modules; Mark-Ant-Walk algorithm 

methods and the Scheduler which is responsible for manipulating the time unit and the calls of different 

agents. 

It was written with a very comfortable interface for altering the problem parameters and the various 

research problems we experiment in our project. 

We provide a documentation option of the agent(s) steps supported by a simple graphical interface of 

the robot’s movement which was useful in assuring the correctness of our simulation. 
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2) Preliminaries 

2.1 Definitions & Notations 

In that section we will define some objects that will serve us with introducing our implementations and 

presenting our results. 

Pheromone Level:  

The robots can mark places visited with pheromone marks and sense the level of the pheromone in their 

local neighborhood. 

In case of multiple robots these pheromone marks can be sensed by all robots and provide the only way 

of (indirect) communication between the robots. 

High values of the pheromone level roughly indicate areas that have been visited many times up to the 

moment and lower values of the pheromone level correspond to a smaller number of robot’s visits. 

Cover Time:  

The number of steps it takes for the agent(s) to cover the given environment; going through every point 

in the domain and updating the pheromone level in each one, leaving no unmarked points. 

Formal Definitions: 

• The domain to be covered will be denoted by Ω. 

• Given any two points a, b∈∈∈∈Ω denote the geodesic distance between a and b as ‖‖‖‖a −−−−    b‖‖‖‖. 
• We shall then assume that the robot is able to sense the pheromone level at its current position p and in a 

closed “geodesic” ring R(r, 2r, p) lying between the internal radius r and the external radius 2r around p. 

R is formally defined as follows: ����, �	, 
� �  �, � � Ω | �� � ‖� � 
‖ � �	� 

• The robot is able to set a constant arbitrary pheromone level in the area swept by its effectors, which is, we 

assume, an open disk D(r, p) of radius r around its current location p. 

The formal definition of D is as follows: ���, 
� �  � � Ω | ‖� � 
‖ � �� 

• We denote by σ(a, t) the pheromone level of point a∈Ω at time instance t, where t = 0, 1, 2, 3, ...  

2.2 Mark-Ant-Walk Algorithm 

Initially, we consider the case where no point is marked with the pheromone, thus all σ values are assumed to be 

equal to zero: σ(a, 0) = 0; ∀a ∈Ω. 

 

(1) Find x: = a point in R(r, 2r, p) with minimal value of σ(x, t) 

(In case of a tie, i.e., when the minimal value achieved at several places - make an arbitrary decision) 

/* note that ‖p − x‖ ≥ r */ 

(2) If σ(p) ≤σ(x) then ∀u ∈ D(r, p) set σ(u) = σ(x) + 1 

/* we mark open disk of radius r around current location */ 

(3) t := t + 1 

(4) move to x. 
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3) Experimental Study 

In this section we will elaborately describe the graphical interface we use in our system and the process 

of getting approximately a circular movement. 

3.1 Representing Circles in the Domain 

Our area is represented by a matrix (2 dimensional arrays) in which we save the pheromone level and 

other vital information, where a forbidden area is marked with a certain value. 

As it is known, the area covered by the robot is circular; hence we need a useful method in order to 

decide if a certain point is included in the circle the robot is covering, the proposed algorithm is to check 

the Euclidean distance between two points; the current location of the robot and the point to be 

covered, if the distance is bigger than the robot’s radius then the point is not included in the circle. 

For example: 

Given a 9x9 matrix, a robot at point (4,4) with covering radius 2, the RED points are included in the 

circle, the GREEN are not. 

 

 

3.2 The “Stairs Problem” 

The representation of the circle in the domain looks more like stairs in the borders of our circle 

representation, graphically it is far from being a circle, therefore we should find a method that properly 

solve it. 
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3.2.1 Proposed solution and finding the appropriate radius 

To overcome this problem and reduce the error in the calculation of the area covered by the robot, we 

must increase the number of pixels represent the domain, each pixel is to deploy into smaller squares. 

This will result in smaller “stairs” on the borders of the circle giving us a good approximation of circle 

shape. 

Let C denote the size of the area. 

Let R denote the radius. 

The solution was implemented in the following way; we loop over range of radiuses. 

Every step we increase R, we also deploy each point into a smaller R x R square, therefore the new size 

of the environment the robot moves on in each step is � � R�. 

This means that we also keep the ratio of the area radius at any step. 

Assuming that the cycles are “pure cycles”, since the area size grows in a constant ratio, then if we 

divide our area into equal-size circles that their size equals the size the robot’s cyclic step covers we get 

an equal number of such circles in each step, in other words, every iteration the number of steps should 

be equal, hence we seek the radius from which the number of steps in the upcoming iterations start to 

be constant.  

This equality of the number of steps we get when the shape that represents a circuit in our simulator is 

approximately a circle. 

 As we increase the area size and the radius in the same ratio we can stop iterating and choose the 

radius from which the number of steps starts to be constant. 

 

Results graph: 

 

 

 
Figure 1: X– Radius variable; Y- Covering time average over 150 runs, at each step the area size is � � �	. 

 

We can easily notice that starting from radius 11 the covering time starts to be constant so from now on 

we use this radius in our upcoming analysis of different environments. 
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3.3 Cover Time vs. Area problem 

In the previous section we investigated the cover time function behavior where domains have the same 

size but different shapes; in this section we will investigate the cover time function’s behavior on areas 

that have the same shape but different sizes. 

Naturally, when we increase the area size the cover time will be increased accordingly, but our 

investigation will be based on functionally how it will be increased. 

Our experiment is based on investigation of squared areas where we linearly increase its ribs in each 

phase. 

In each phase we run the robot on the current squared area saving its cover time to be analyzed later. 

Phases of the experiment are as follows: 

Let C denote the magnification factor of the area. 

Let X(k) denote the part that represents the radius of the rib of square number k. 

Initial phase: 

X(1) = � (where r is the radius found in section 3.2) 

Phase k > 1: 

X(k) = X(k-1) + M (where M is a fairly small constant). 

In phase number k the domain is a square of size: √� � �� � ! √� � �� �. 
 

Note: we repeat the operation above to the largest size we can run the simulator on (due to run time 

limitations). 

3.3.1 Cover Time Anticipation 

Obviously, as we increase the squares in each phase the cover time will increase respectively. 

Note that the difference in sizes between phase k+1 and k subjects to the following expression: 

� � �� " #�� �  � � �� � � � $ �� "  2 � # � � " #� �  ��& �  � � $2 � # � � " #�& 

C and M are constants, the difference is linear! 

Moreover, the area covered by the robot in each step is exponentially increased from phase to phase, so 

if we take a look at the additional part in the square comparatively to the previous phase we can realize 

that the additional circles number is in the order of the following expression:  

  � � $2 � # � � " #�&/�() � �*+,-. /0.1,2��� where FOUND RADIUS is the radius found in 

section 3.3.1. 

The expression above is linear, and then the Cover Time vs. Area function will likely be linear too. 
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3.3.2 Simulation Results 

 

Figure 2: X- Area size, Y- Covering time average over 150 runs. 

 

 

Figure 3: X- Area size, Y- Pheromone level average over 150 runs. 

 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 100000 200000 300000 400000 500000 600000 700000

Cover Time vs. Area

0

0.5

1

1.5

2

2.5

3

0 100000 200000 300000 400000 500000 600000 700000

Pheromone Level Average vs. Area



9 

 

 

Figure 4: Blue function- Cover Time vs. Area function (Figure 2), Red function- y = 0.44*log(n). 

n- The number of points in the domain 

 

 

Figure 5: Blue function- Cover Time vs. Area function (Figure 2), Red function- y = 0.88*(A/a)*log(A/a). 

A- size of environment, a- area covered by the robot in a single step. 
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Figure 6: Blue function- Cover Time vs. Area function (Figure 2), Red function- y = 0.0137042484*x-49.8214264 

(The linear function gradient was calculated using the first and last points) 

 

3.3.3 Conclusions 

• In section 3.4.1 we expected a linear behavior of the Cover Time vs. Area function, but as we can 

see the C*(A/a)*log (A/a) function gives as a better approximation of the robot’s behavior (can 

clearly be noticed in Figures 5 and 6). 

When every point is visited approximately log(n) times and there are n points it is most likely that 

the cover time will be n*log(n). 

•  Looking at the Pheromone Level Average vs. Area function (Figure 3) we can see that as the 

square gets bigger the pheromone level is increased respectively; the probability of visiting the 

same point repeatedly is increased as well.  
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3.4 Cover Time vs. Environment Diameter 

Theoretically, given the covering radius of the robot on the environment we are asked to cover, we can 

calculate the minimal number of steps (Cover Time) the robot needs in order to “clean” it. 

Practically, from the robot’s point of view, it has no information about the area it is supposed to cover, 

thus we can assume that the cover time will exceed the minimal time, in addition thanks to the fact that 

the next step is chosen randomly in most cases. 

Now the question that arises is given an area, is it enough to determine the upper/lower bound of the 

cover time or the shape of the area has an effect also? 

In case the shape of the area has an effect, then what is the actual impact? 

How much time would it take for a robot located in a rectangular area to cover it, comparatively with 

the same robot located in a squared area?  

In order to answer the questions above we conducted the following experiment, we run our robot on 

rectangular areas with different width and lengths but in same sizes. 

Phases of the experiment are as follows:  

Let X(k) denote the length of the rectangle number k. 

Let Y(k) denote the width of the rectangle number k. 

Let A denote the area size (the area is fairly large). 

We start our experiment with equal X, Y values, which means X(1) = Y(1) = √0. 

In the upcoming steps where k > 1 the following is satisfied: 

X(k) = X(k-1) – M (where M is a constant that satisfies: M<< √0). 

Y(k) = A / X(k) 

We repeat the operation above while X(k) > 1. 

Note: in every step the area size is constant and equals: X(k) * Y(k) = X(k) * A / X(k) = A . 
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3.4.1 Cover Time Anticipation 

The more we stretch the rectangle; logically we limit the movement of the robot to a smaller number of 

directions as the height gets smaller. 

Thus we increase the probability of visiting the same points, hence the number of steps is supposed be 

increased respectively. 

But it stops to get worse as the height of the rectangle starts to get smaller than the robot’s radius, 

because in this case the robot is bound to two directions at most, and in each step it covers the points in 

a way that it doesn't leave gaps vertically, and the result should be 

2*(Length/Diameter) in average for a relatively small height, multiplied by two because in the begging 

the robot chooses one direction and when it reaches the rectangle's edge it will go back in the opposite 

direction to the starting point and from there to cover the second uncover part, graphically in each step 

we have approximately the following behavior: 

 
Where the bigger red circle is the area covered by the robot in a single step, the red point is the current 

position of the robot and the grey part is the covered area in that step. 

Important to denote that this is valid for relatively small heights! 

 

 

 



3.4.2 Simulation Results 

Figure 7: X- Rectangular environment’s diameter

Figure 8: X- Rectangular environment’s diameter
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3.4.3 Conclusions 

• The more the shape is squared, the less the cover time is. 

This is compatible with the following explanation: the more we stretch the rectangle the more 

we limit the movement of the robot, thus it will result in increasing the probability of visiting the 

same points repeatedly, and this is reflected in Figure 8 (the rise continues until the height is 

close to the diameter, this will be explained later in this section). 

In a squared environment the robot has more choices of directions which results in a low 

pheromone level average (see Figure 8). 

The continuous rise of the covering time sustains until the height is close to the robot's 

diameter. 

• Following the rise of the covering time we get a drop in it as the height gets smaller than the 

diameter and a strict drop as it gets closer to the radius. 

As we get closer to the diameter and smaller, actually we increase the probability of getting two 

choices of directions of the robot's movement, by getting closer to the radius we also decrease 

the probability of getting gaps vertically, thus it will result in covering the area in a horizontal 

movement. 

• The strict drop is followed by a strict rise in the covering time for very small heights. 

When the height reaches very small values the length gets very long respectively as the ratio 

between both begins to grow significantly. 

The robot's straight movement over a significantly long environment will result in increasing 

covering time as the ratio between the environment length and the diameter begins to be 

pretty large (notice that the increase in the covering time has no connection to the pheromone 

level, which strengthens our claim). 

Notice as the height reaches significantly small values than the radius, the covering time 

function will be committed to the following range: 

 
456789:;<8= >9?@=A9B597CD E59:7F

G@8B575=
 < C.T < 2 ! 

456789:;<8= >9?@=A9B597CD E59:7F

G@8B575=
 

Where  
456789:;<8= >9?@=A9B597CD E59:7F

G@8B575=
 is the best case we get when the starting point's 

distance from the edge is less or equal than the value of the radius, and 

2 ! 
456789:;<8 >9?@=A9B597CD E59:7F

G@8B575=
 is the worst case that we get when the starting 

point's distance is (radius+1) and the robot's first choice of direction is opposite to the closer 

edge so the robot will have to cover each pixel until the far edge and back away to the second 

edge covering the remaining very few pixels (~radius). 
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3.5 Cover Time vs. Multi-Agents problem 

In the previous sections we have experimented single agent behavior over various domains; in this 

section we will investigate the covering time average of a fairly large environment when it is being 

covered by multi-agents and not just a single one, introducing the covering time differences for various 

numbers of agents and the reasons for them. 

Note: a single point cannot be occupied by two or more agents simultaneously. 

3.5.1 Simulation Results 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: X- Number of Robots, Y- Covering time average (of squared environment of size 500x500) over 150 runs. 

3.5.2 Conclusions 

• Trivially more agents being used to “clean” the domain, the faster it will be covered. 

• The Cover Time vs. Multi-Agents function starts to drop at a fast rate in the beginning but the 

drop stops to be so firm when there are a relatively large number of robots until it becomes 

approximately constant, the simple reason is that when we have more robots the ratio of the 

total area covered by them in one step and the environment is relatively high, as a result the 

chances of collisions are significantly increased. 

For example, when the environment is fairly large and we have two agents, the number of 

collisions is too low as they the probability to start from distant points is fairly large, thus we can 

expect that the covering time will be half of that it takes for a single robot to cover the area, but 

the probability of having distant starting points is decreased when we add more and more 

robots, causing collisions and as a result inefficient utilization of robots 
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3.6 Improving the Algorithm 

After we had different kinds of tests in order to explore the robot’s behavior and how the various 

parameters affect the covering time of our agent, our target in this sections it to introduce an 

improvement to the algorithm. 

In the classic algorithm the next step was arbitrarily selected from a group of points with minimal 

pheromone value. 

The algorithm is not optimal in some cases, for example when the agent is located in a domain where its 

scanning range includes holes (a very small number of adjacent uncovered points) and in a different area 

of the same range there are plenty of uncovered points, the inefficiency begins when the next step 

chosen by the robot is in the latter area of the scanning range, as a result we get a covered area with a 

hole in it. 

For this reason, the robot will have to find the left uncovered points in an arbitrary movement, thus 

causing increasing in the covering time and the pheromone level. 

3.6.1 The Next Step Proposed Improvement 

Because of the case mentioned in the previous section, hereby we propose a new technique of choosing 

the next step which should decrease the number of holes and as a result the covering time and the 

pheromone level as well. 

The proposed change is in choosing the next step*: 

We divide the open disk to four equal regions as follows: 

 

 

 

 

 

 

We choose the next step according to the following algorithm:  

• Find r := a region (#1,#2,#3,#4 or NULL) with minimal positive numbers of uncovered points 

(pheromone level = 0). 

/* NULL is returned in case there are no zero level pheromone values at any point. */ 

• If r ≠ NULL then Find x := a point in R(r, 2r, p) && located in the found region with minimal value of 

σ(x, t). 

• Else, Find x := a  point in R(r, 2r, p) with minimal value of σ(x, t). 

* Step (1) in the classic algorithm. 

#1 #2 

#3 #4 

D- Open disk (scanning range). 

R- Closed ring. 
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According to the proposed change, the robot will first cover the areas with small number of uncovered 

points and just then it will move to clean the rest. 

The holes are recognized by a small number of adjacent uncovered points, thus the proposed change 

will leave the environment with smaller number of holes in it. 

Proving the correctness of the proposed algorithm: 

Note that the algorithm never gets stuck and there is always a point that can be chosen as the next step:  

In the first three steps of the algorithm we always try to visit uncovered points to be covered in the next 

covering step of the robot. 

If the algorithm doesn’t find the next step according the first three phases of the algorithm above, the 

next step will be chosen according to the classic algorithm, thus the correctness of the new algorithm 

results from the proof of correctness of the classic algorithm. 

Note: the algorithm never stops. 

3.6.2 Simulation Results 

In order to show the priority of this algorithm over the classic one, we introduce graphs including same 

parameters used in the experiments we first carried out, representing the new behavior of robot and 

comparing it to the old one. 

 

Figure 10: X- Area size, Y- Covering time average over 150 runs. 
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Figure 11: Cover Time vs. Area, Red function- Old algorithm’s output, Blue function- New algorithm’s output. 

 

• Note that when the area size is big the difference between the two algorithm’s gets bigger 

respectively, this is pretty logical because the more holes there are in a big environment the 

more it takes for the robot to find them. 

Unlike the old algorithm, the new algorithm avoids leaving holes and the mentioned above is 

reflected in their Cover Time vs. Area functions. 
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Figure 12: X- Rectangular environment’s diameter (area size is 350^2), Y- Covering time average over 150 runs. 

 

• Note that the function behavior is similar to the old algorithm’s behavior, which strengthens the 

claims mentioned in section 3.3. 

  

  

Figure 13: Cover Time vs. Environment Diameter, Red- Old algorithm’s output, Blue- New algorithm’s output. 
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4) Conclusions 

Here we will summarize our test results introducing the general conclusions about the agent(s) behavior 

on the various environments we explored. 

• We can deduce from the Cover Time vs. Environment Diameter results graph that the more the 

domain is squared the better the cover time is. 

 

• We can calculate the Cover Time of a single agent running on a squared area with a constant 

size increasing factors (e.g. adding a constant to the square’s rib each time) by the 

C*(A/a)*log(A/a) formula that can be calculated using the results of few runs of the algorithm 

over the claimed areas. 

It will obviate us from wasting time running the simulation when it comes to relatively large 

domains and the results are approximate as we can see in the former sections. 

 

• Looking at the Cover Time vs. Number of Robots we can deduce that adding more and more 

robots will definitely begin to be inefficient at some point where the number of collisions starts 

to grow up, which means at that point we are adding robots in vain, poorly exploiting resources 

and misusing functionality. 

 

• After introducing the new technique of choosing the next point and graphically comparing it to 

the old technique, we can obviously see the significant drop in the covering time independent of 

the shape and size of the domain, thus it is worthwhile to use it as a substitute to the old one. 

 


