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1. Introduction

1.1 Problem Definition.

We are dealing with the multi-agent patrolling task. Let us refer to wikipedia for the

definitions of patrol and multi-agent system:

A patrol is commonly a group of individuals or units that are assigned to monitor a 

specific area. 

A  multi-agent  system (MAS)  is  a  system  composed  of  multiple  interacting 

intelligent agents. 

Multi-agent systems can be used to solve problems which are difficult or impossible 

for an individual agent or monolithic system to solve. Examples of problems 

which are appropriate to multi-agent systems research include online trading, 

disaster response, and modeling of social structures.

Multi-agent systems can  manifest  self-organization and  complex  behaviors  even 

when the individual strategies of the agents are simple.

The agents in a multi-agent system have three important characteristics:

-  autonomy:  agents are autonomous, i.e.  there is no direct communication 

between the agents or between the agents and any control units.

- local views: no agent has a full global view of the system.

- decentralization: there is no controlling agent or unit.

Thus, our goal is to perform an area patrolling using ant-like agents. The area we deal with is 

a group of stations with paths between them. The stations are have to be visited as frequent 

as possible. The time intervals between two subsequent visits to the same station are called 

idleness.  In  other  words,  we  can  say,  that  our  goal  is  to  achieve  the  minimal  idleness 

possible.

For the formal analysis we think of the area as of graph G(V,E), where V is the group of 

vertices (each vertex models station) and E is the group of edges (each edge models a path 

between stations).
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1.2 Solution Description

The approach we use is as follows. The agents are divided into a leader and a herd. Each 

type has a predefined behavior. A leader's function is to find the path on the graph and all the 

rest has to follow it. Every agent can mark the vertex with special markings based on time 

stamp. The leader's mark differs from herd-agent's mark. It is used by leader himself to find 

the path and by herd-agents to recognize the path to follow. The herd-agents use 2 markings 

and they are  indistinguishable  between different  herd-agents.  These marking are used to 

spread agents uniformly over the path.

Thus, the problem is divided into two parts: circle finding and swarm deployment. 

Circle finding is the algorithm run by leader, the  swarm deployment is algorithm run by 

herd-agents. Let us take a closer look at these algorithms.
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Cycle  Finding.  Note  that,  what  we (the leader)  are  actually looking for  is  Hamiltonian 

cycle(which is optimal) on the provided graph. The leader makes a move every time cycle. 

The decision where to go is made based on the following scheme:

The schema above is  general  PVAW(probabilistic vertex-ant-walk)  schema.  The addition 

here with comparison to regular VAW is the possibility to make a random move in case that 

some vertex is visited not at the same order it was visited in the previous time. Which is 

sufficient  to  indicate  that  the path is  not  a  Hamiltonian cycle.[1] This addition allows to 
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prevent convergence to a non-Hamiltonian cycles, while always following a Hamiltonian 

cycle when found.[1] Note also, that  the neighborhood definition depends on how far the 

agent can “sniff”, in other words, the meaning of “move to the random neighbor” and “move 

to the most outdated neighbor” are subjects to change depending on how a neighborhood is 

defined. In strict terms, when we decide which algorithm PVAW, PVAW2 or PVAW3 to run, 

we actually define the neighborhood to be N1, N2 or N4 appropriately. The formal definition 

of Nd(u) can be found at [1].

Swarm Deployment.  In order to achieve the best perimeter patrol  agents should spread 

uniformly over the cycle. Each herd agent has a simple decision routine. Upon arriving to a 

vertex he checks whether he needs to stay and increase the distance between himself and his 

predecessor or to rush forward because he is on time or being late. There is also a chance of 

probabilistic move when the previous idle period is greater than the current strictly by 1 time 

cycle. This allows to prevent agents grouping for low n/k ratios, where n – the number of 

vertices in the graph, k – the number of agents. Herd-agents decisions are made based on 

Algorithm 6 [1]. Its scheme is presented below:
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Where the function f() is defined by:

double f(int l1, int l2)

{

if (l1 < (l2 - 1)) return 1;

if (l1 == (l2 - 1)) return 
1
n

;

return 0;

}

Let us note, that the cycle finding process has a probabilistic convergence time. This leads 
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us to the state, where the herd-agents markings are very outdated at some vertices, which in 

its turn causes convergence time to be very high. Consider a vertex vi that has 1≪2 at 

the  moment   the  cycle  is  found.  Agent a x  entering  v i will  stay  there  for  at  least 

T=2−1−1 which is big. Moreover,  all the rest of agents will  stuck at  v i for the 

same reason. After waiting enough for  1 to reach 2−1 one of the agents  a y will 

have to  leave  v i and update  2 and  1 .  By tracing the definitions of deltas  and 

following the deployment flow chart, one can see that after update made by a y we have 

1=0 ;2=T and thus, T new
=2−1−1=T−1 . Which means that all agents currently 

at v i  won't move for the next T new time cycles. And even if there are no jams at other 

stations, the deployment convergence time tends to be OT 2
 . 

In  this  circumstances,  it  was  decided  that  the  leader  will  be  responsible  for  one  more 

function: resetting the herd-agent visits markings after the cycle was found. This requires the 

leader  to  know  ∣V∣ ,  but  not  G's  topology.  And  thus,  its  use  in  most  cases  may be 

considered as non-breaking decentralization concept. Such a knowledge allows the leader to 

notice when the cycle is found. After the cycle is found, the leader moves from vertex to 

vertex on the cycle and updates 1,2 until it completes the whole loop. After resetting the 

taus of all the vertices, leader continues his usual routine.

While running simulations we found two good manners to do this:

- 1=2=currentTimestamp

- 1=currentTimestamp;2=currentTimestamp−
n

k−1


Both decrease the deployment  convergence time to  be  On2
 ,  because after  the taus 

resetting process is over, T is at most n⌈
n
k
⌉ , and the rest of analysis persists.

The second approach (though demanding from leader to know the herd size  k ) seems 

(experimental conclusion, no analysis was done here) to provide better results. We use the 

second approach in our simulation implementation.
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1.3 Project Goals

The project goals are to provide a visualization of the above algorithm. Simulation has to 

provide:

– Generate and draw Gn,r graphs with given n and r.

– Place and show k agents, for a given k.

– Selecting neighborhood size by choosing algorithm (PVAW, PVAW2, PVAW3)

– Highlight the path (cycle, when found).

– Change the simulation speed.

– Restart the simulation for the same graph.

– Switch between initial and circle like views.
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2. Implementation Design

2.1 Programing Concept

As long as we deal with animation, the need of periodical redrawing arises. It was found that 

very natural solution is to split the program into two threads: the main thread (responsible of 

interaction with a user and containing all the necessary data and functionality) and the timer 

thread(has only one purpose – generate callbacks to the main thread with a given frequency).

Schematically it can be shown this way:

MainThread TimerThread
-timerThreadInstatnce - frequency
. -refToMainView
. (data & functionality)
. each +setFrequency()
+timerCallback() +run()

+stop()frequency ms

Thus, as we can see, the main thread holds an instance of the timer thread, which can be 

started or stopped upon user's action. Main thread is also responsible of gathering a user 

input. The input is divided into two groups: initial and runtime.

Initial input represents graph parameters (as we deal with Gn,r graphs these are  n and  r), 

number of agents and which algorithm to use.

Runtime parameters are animation speed and view (initial vertices arrangement or circle-

like).

For now, we have general understanding of how the animation runs. Let us take a closer look 

into the simulation core class diagram:
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Location Agent
- ID - ID
- coordinates - location
- isRingCoords - path
- σ ...
- τ1, τ2 + move()
... + draw()

Path Graph
+locations[] - n,r, adjMatrixes ...
... - getPath(a, b)

...
+ draw()
+ getPathToRandomNeighbor(x)
+ getPathToRandomMinNeighbor(x)
+ getPathToNextAgentVertex(x)
...

Simulating sniffing ability

Only used when the 
agent's sniffing 
distance > 1 or to 
smooth the animation

Each time cycle the main thread calls for each agent to move and after that for the draw 

methods  both of the agents and of the graph.

Let us make a distinction: analysis and flowchart at 1.2 refer to station, while here we refer 

location as agent placement. The following terms will be used in future explanation: 

-  real location – the location that is equal to station for analysis and has the same 

coordinates as appropriate station;

-  semi-real location – the location that has the same coordinates as the appropriate 

station, but is irrelevant for the analysis. These locations are used for the animation purpose 

for PVAW2 and PVAW3 algorithms only, where the agent can has destination station not in 

his direct neighborhood. Thus, semi-real location is a matter of circumstances, in other words 

if the agent intent to bypass the station while moving to another one, its appropriate location 

called semi-real.

- virtual location – the location that has no common coordinates with any station nor 

participates in analysis. This kind of locations has bare animation purpose. They are actually 

have coordinates on edges and are aimed to smooth the animation.

Depending on the agent's role (leader or herd agent) and current circumstances (markings 

state) the agent check that he has a path to follow. If not, he retrieves it from the graph 

(sniffing the area and makes a decision). When the agent has a path, he removes the first 

location from it and goes there. Note, that the paths we refer to here are sets of locations 
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(real, semi-real, virtual). As a matter of convention, valid path has only one real location – 

the  final  one.  Thus,  following the  path  in  this  content  has  equal  meaning as  moving to 

appropriate neighbor(random, next on the cycle, with lowest  ) at 1.2.

Schematically it can be represented by:

Thus, upon arriving to the real location (which is always final) on the path, the agents act as 

defined  by  the  appropriate  algorithm,  while  being  on  the  path  serves  simulation  and 

animation needs only.

2.2 Data Structures and Algorithms

The core algorithms which are  the cycle  finding and the deployment  have already been 

explained. Their formal definition and analysis can be found in [1]. Let us take a look on 

some additional algorithms used in the simulation.

- graph generation. Simple algorithm for Gn , r generation, based on random number 

generator. Each vertex position is defined randomly in ((0,0) ,  (1,1)) square and then 
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mapped to the necessary square size. Edges are defined based on the next condition: 

∀ v i , v j∈V Gn ,r ,i≠ j : v i , v j∈E Gn , r⇔∣v i , v j∣r

- graph road map. Finding a path on a graph is Onl , whele l is the path's length. 

Although, we are interested only in paths with l4 , running path finding algorithm 

each time agent “sniffs” the area is highly inefficient. Therefore, it was decided that all 

available paths will be calculated during initialization stage and stored for future use. 

That is, depending on the used algorithm (PVAW1, PVAW2 or PVAW3) the road map is 

filled. The road map we refer to is actually a bi dimensional matrix  RM[n][n], where 

RM [ i ][ j ]=calculatePathv i , v j ,

if there is no such path, calculatePath() will return null. In its turn  calcualtePath() runs 

DFS to find the path, while its depth is limited by the “sniffing” range.

Data structures. 

Most of data structures used are represented by uni- and bi- dimensional arrays. Thus, agents 

herd, adjacent matrices, road map are all managed with arrays.

The most complex data structure used is built-in java template type ArrayList. It is a linked 

list with random index-based access. It was choosen as one which best suits for handling 

paths and neighborhoods of vertices.

This project does not require more complex data structures.

2.3 Implementation platform

The project should it should be easily accessible through the web. Thus, facing the request 

for web-based application, there were several options available:

- Java applet

- Flash applet

- JavaScript 

All the above candidates has pretty equal programming accessibilities for simulating task. As 

we saw there are no complex data structures or algorithms for data manipulation needed 

here. So, all the three would perfectly match under this criterion.

One  more  criterion  is  animation.  Animation  in  JavaScript,  though  possible  to  achieve, 

especially with modern JavaScript extensions as JQuery, Prototype, DOJO etc., still is a very 

resource consuming and some-what tricky.  The most valuable advantage of this platform 
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would be independence on user's software. The only program user actually needs here is an 

internet browser(otherwise it would confront the requirement of web-based application) with 

JavaScript support (which is available in more than 99% of cases), while Java and Flash 

require additional installations to work on the user's machine.

Flash has the most powerful abilities in graphics processing, with no known limitation for 

simulation implementation we needed. The only counterargument is our lack of experience 

with Flash ActionScript.

Java Applet platform also has more than sufficient tools for animation complemented with 

almost   full  featured  abilities  of  Java  programming  language.  And,  as  long  as  we  had 

programming  experience  with  Java,  it  was  decided  to  use  this  platform  for  the 

implementation.
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3.Running the simulation

Let us take a look at the project's main view:

The  right  control  panel  allows  us  to  set  the  simulation  parameters  (number  of  vertices, 

number of agents, the value of r, which algorithm to use, whether or not the leader updates 

1,2 upon successful cycle finding) along with the simulation state control buttons (graph 

generation,  simulation start/stop/restart,  view switching)  and the animation speed control 

slider.

After  n,k,r are set, “Generate Graph” button can be pressed. Each following pressing will 

bring newly generated graph with the provided parameters. After the user is satisfied with 

the graph he/she got, “Start/Pause” can be pressed to lunch the animation. If the animation is 

already  started,  the  only  options  you  have  are:  changing  the  animation  speed, 

pausing/continuing the simulation and switching the view to circle-like after a cycle was 

found and back.

If the user wishes to switch algorithm or/and the leader's behavior regarding taus resetting, 
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he/she can change these parameters and press restart. This will restart the simulation on the 

same graph with new parameters.

Note, that n.k.r parameters change will need that “Generate Graph” be pressed.

Circle-like view example is presented below:

This  view is  meant  to  provide tracking after  the deployment  process.  After  a  cycle  was 

found, it can be thought of as a circle perimeter, that allows to have a clear look of how the 

spreading over the cycle is going on.

Output. Besides simulation's animation itself , total run time and max idle time (idleness) 

are displayed on the control panel. This, along with the top left state message, helps to see 

and estimate what is current cycle finding/convergence state and compare it to the theoretical 

prediction.
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4. Summary

Multiple simulation runs showed results within the theoretical limits. Both the cycle finding 

and the deployment processes seem to agree with theory. Thus, the application showed itself 

to be capable of modeling a multi-agent patrolling system.

Future work:

– Improvement  of  tau  resetting  process.  This  issue  solution  would  bring  valuable 

investigation in speeding up the deployment process. Currently, after the tau updating is 

done by existing scheme, herd-agents tend to group at one point, and, only after this to 

spread over the cycle. Seemingly, though in theory that was the analyzed situation, it is 

the worst possible case. Changing this may drastically improve the average convergence 

time. Taking into account the fact, that agents move on the cycle only in one direction, 

the leader could assign taus with future (or combining actual and future) timestamps 

until  he encountered a herd-agent.  Decision of actual values to use is  left  for future 

investigation along with simulations to check the approach.

– Eliminating global timing. Global timing elimination would avoid the main SPF(single 

point of failure) of the system. If some agent's clock is wrong, this may lead to complete 

system malfunctioning. While synchronization between the moving agents is very tricky, 

if  possible.  It  was proposed to  use station based clocks.  Such an approach gives an 

opportunity to use one of the distributed clock synchronization algorithms presented in 

[4].

– Logging. Logging can provide the ability to trace simulation backwards. Which in its 

turn would strongly increase debugging abilities, if such a need arises. Also, it seems like 

running the simulation backward could be a nice feature even for user needs.
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