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Abstract
Robots plays key function in daily life tasks. Recently, it was shown that a single ant robot 
(modeled as finite state machine) can simulate the execution of any arbitrary Turing machine. 
This proved that a single ant robot, using pheromones, can execute arbitrarily complex single-
robot algorithms. In this project, we used an algorithm that leaves Ant-like pheromosne on a 
surface in order to solve the covering problem.

Introduction
The mobile robot covering problem can be formulated as follows. Let a tool of a
specific planar shape be attached to a mobile robot, and let A be a continuous planar
work-area bounded by obstacles. Then the mobile robot has to move the tool along a
path such that every point of A is covered by the tool along the path. The covering problem
is currently receiving considerable attention for several reasons. First, sensor-based
coverage by mobile robots seems amenable to the geometric planning techniques developed
for the sensor-based robot navigation problem. A second reason is current interest in 
competitive algorithms for autonomous systems that operate with incomplete information of the 
area. Finally, recent work on ant-like coverage has spurred interest in the possibility of achieving 
complex coverage behavior by bounded-resource agents who leave pheromone-like markers in 
the environment. In the previous project, we’ve implemented the online version of the Spanning 
Tree Covering algorithm. In this project, we’ve implemented the Ant-Like version - which leaves 
pheromone-like markers in the environment in order to solve the problem.

 

The Environment
The Robot leaves pheromone-like markers in the environment 
in order to know the places it has already covered. In order to 
leave those pheromone-like markers, we used a 
phosphorescent glowing floor that being charged by the robot 
using an UV LED that leaves dots on the phosphorescent floor.
 
 

 

 

Task Description
 



Given a phosphorescent glowing floor, the 
robot divides the floor virtually into sub-cells of 
its size, and each 4 adjacent sub-cells are 
considered one cell.
The Robot’s task is to cover the floor, passing exactly once over each sub-cell and to return to 
the same cell where it started.
A red light in a cell indicates that the cell is an obstacle.

 

The Robot
 
The Robot is built from Mindstorms Lego. Its major parts 
are:

● Board: PIC-18 board.
● Wireless Module: Xbee wireless communication 

module.
● Wheels and Motors: 2 main wheels, motorized 

by two gear motors, and two auxiliary wheels 
that enable the Robot to perform an on-place 90 
degree rotation.

● Camera: Wireless camera directed up.
● Mirror: A curved spherical mirror, directed down.
● 4 UV (Ultraviolet) LEDs: Enable the robot to 

leave green tracks (dots) on the glowing floor.
 

The Robot is wireless-controlled by a computer program 
which runs the STC Algorithm.
The camera with the spherical mirror, enable the Robot to take a 360 degree panorama view of 
the adjacent area in a single shot, as shown below.



 
 

Image Transformation and Filtering
In order to work with the 360 degree panorama view, we apply a transformation, which 
produces an image like the one below.

The main idea of the transformation is that if we look at a single pixel in the curved image, and 
compare it to its new coordinates in the normal transformed image, we see that the pixel moves 



on the axis that connects it with the camera lens. In other words, in both the curved picture and 
the normal picture, the pixel is in this axis, although in the curved picture the pixel is closer to 
the camera. So what we need to do is to calculate the ratio between its distances of the camera 
lens in the two pictures. How much should it move on this axis in order to get the normal picture, 
we did this by calculating the angle Phi and Theta as shown in the figure below.

  after applying the transformation, we filter the image into two images, the obstacles image and 
the visited cells image. In the obstacle image, we keep all the pixels that the red color is bigger 
than a threshold. And in the visited cells, we keep the colors that the red colors is less than a 
threshold. Basically, this gives us two images, one for the green dots the robot left on the board, 
and other one, is the red dots of the obstacles.

Spanning-Tree based Coverage - Algorithm
 
The Robot uses the ant-like version of the STC Algorithm described in the paper "Spanning-
tree based coverage of continuous areas by a mobile robot" by Yoav Gabriely and Elon Rimon 
(http://www.springerlink.com/content/n5770672r3852113/fulltext.pdf). A copy of the paper is 
attached in the appendix.
We assume that the robot occupies a square of size D.
We subdivide the work-area into square cells of size 2D, and assume that obstacles are red 
lights.
In this version of STC the robot has no prior knowledge about the environment,
except that obstacles are stationary. Rather, the robot must use its on-board camera to
detect obstacles and plan its covering path accordingly. We assume that the robot is capable 
of identifying obstacles in the four cells neighboring the robot’s current cell, as described in the 
following figure:
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The Ant-like STC algorithm
The ant-like version of STC is also an on-line algorithm, and is similar to the algorithm we used 
for the first project. However, now the robot has the ability to leave markers in the
sub-cells it covers. We utilize these markers to reduce the memory consumption to O(1) (Final-
State-Machine) instead of saving the board in the computer, as we did in the previous project.
 
Initialization: Set x = S.
While S has unmarked sub-cells:
1. Determine the parent cell of x, w = Parent(x).
2. Determine a new neighbor of x, y = Neighbor(w, x)
3. If y is not Null:

3.1. Move to a sub-cell of y, while marking the sub-cells of x being covered.
3.2. Set x = y.

4. Else (y is Null):
4.1. Return from x to a sub-cell of w, while marking the sub-cells of x being covered.
4.2. Set x = w.

End of while loop.

Marking Sub-cells
Each time the robot decides to drive forward, it turns on the lights for a few seconds before 
proceeding, leaving a trace in one edge of the visited sub-cell.
Because the robot occupies a sub-cell, and his lights are on the back, the lights leave a trace 
only on the edge of the cell. And because we turn on the light only upon driving forward, exactly 
one edge of each visited sub-cell will be lit.
The reader may wonder here why didn’t we keep the leds on during the robot’s operation, 
leaving trace on every covered point. Turning the light on during drive doesn’t leave a radiant 
enough traces. Instead, we have chosen to turn it on only on the edges, for a few seconds, to 
allow the surface to absorb the light.
 

Finding the Parent cell
As long as the four sub-cells of the current cell are not all marked, the robot need only to scan 
the sub-cells in counterclockwise order and identify the transition between unmarked and 
marked sub-cells. The two sub-cells bordering this transition have an exterior edge in common. 
This edge is necessarily the boundary edge between the current cell and its parent cell in the 
spanning tree.



Upon entering a cell, the robot takes a photo of it, and finds its parent cell based on the lights 
inside it.
However, our robot marks only one edge of each visited sub-cell, and this edge is shared with 
the neighboring sub-cell, making it trickier to figure out if a sub-cell is visited.

Identifying visited sub-cells
Because the robot turns on the light only upon driving forward, its path in a new cell can be one 
of the following four:

The figure below shows a cell, divided into 4 sub-cells, and 5 edges of sub-cells are marked 
with boxes.
By examining all the possibilities where the robot is visiting a cell, we reached to the conclusion 
that only the 5 boxes below can be lit upon entering a cell.



 
If the robot hasn’t entered this cell before, none of the 5 boxes above will be lit. This stems from 
the definition of the robot’s path.
If the robot entered the cell from sub-cell 1 before:

● It could take right, lighting box 5 and exiting.
● It could move forward, lighting boxes 1 and 3.
● Or it could take left, lighting boxes 1, 3, and 4.

If the robot entered the cell from sub-cell 2 before:
● It could take right, lighting box 3 and exiting.
● Or it could move forward, lighting boxes 2 and 4.

If the robot entered the cell from sub-cell 3 before:
● It could only turn right, lighting box 4 and exiting.

 
We assume that sub-cell 0 was not visited before, because otherwise, the robot would not have 
chosen to enter it. And from all of the above, we can conclude that:

1. sub-cell 1 is visited iff one of the boxes 1 and 5 is lit.
2. sub-cell 2 is visited iff one of the boxes 2 and 3 is lit.
3. sub-cell 3 is visited iff box 4 is lit.

Finding the green dots
To find the green dots left by the robot as traces, we crop the relevant section of the image, and 
look for “dots” in it.
To find a dot, we look for the square of pixels (of a dot’s size) that has the highest average 
value.
Looking for a square, instead of a single pixel allows ignoring noise.



If the maximum found value is under a threshold, then the sub-cell was not visited.
After finding a dot, we black out the square, and look for a new dot.

Angle Detection
Because of the battery decay, and the fact that the robot is built from Lego, a 90 degree turn, 
wasn’t actually 90 degree, so we needed an algorithm to detect the current angle, and to fix 
the rotation in case it was not truly  90 degree rotation. In order to do that, we take the green 
transformation image, find the maximum green value (x0,y0), take a small area surrounding 
the max value we found, cover the dot we found (X0,y0) with black box, then find another max 
value, we do this 3 times. with this, we find the newest 3 dots the robot left. we pass a line 
between those 3 lines (as accurate as possible). And the slope of this line basically is the angle 
we are seeking for.

Rotation and Calibration
For the robot to rotate 90 degrees, we send it a rotate command, specifying the time, T, we 
want it to spend in rotation. We initially set T to a time that let’s the robot do the first rotation 
accurate enough.
After each rotation (including the first), we take an image of the area, and using the angle 
detection algorithm described above, we detect the robot’s deviation. If the robot has done the 
rotation accurate enough, no calibration is needed. Otherwise, let d be the angle that the robot 
actually rotated in (calculated using the angle detection algorithm). Now we know that in the 
next time, we should give the robot 90/d * T time to do the rotation, because in the time slice T, 
it rotated d degrees, so for 90, it needs a time slice of 90/d * T. So we reassign T to get the new 
value and send the robot another command in order to let it complete the 90 degrees rotation it 
was supposed to perform.

Obstacles Detection
To distinguish between visited cells, that are marked with a green line, and obstacles, the latter 
were defined as red-lights. If a cell contains a red light, it’s regarded as an obstacle.
Because the transformation works with a grayscale image, after taking a photo, we:

● Filtered out the red light, and ran the transformation on the green image, identifying 
visited cells or sub-cells.

● Filtered out the green light, and ran the transformation on the red image, identifying 
obstacles.

 
 
 

Precision
One of the challenging changes between the previous project and this one, was the precision 
issue. In the previous project, we only needed to identify whether or not a cell is an obstacle.
In this project, if a cell is not an obstacle cell, we need to identify visited and free sub-cells.
A sub-cell’s area is only fourth of a cell’s area. Moreover, we have markers only on the edges of 
the sub-cells.
Thus, small inaccuracies stemming from the camera, the environment, a low light from the 



outside, or a deviation of the robot, caused the robot to make wrong decisions.
One way we used to debug the robot’s decisions was saving a copy of each taken snapshot, 
with a timestamp on it. Thus, we were later able to track the robot’s path and spot the issues.
 
To improve the accuracy, we added a two-step initial calibration.

Initial Calibration
Because the robot is built from LEGO, the parts can easily move and the transformation can be 
easily distorted. That’s why we added a calibration logic, which runs optionally in the beginning.

Transformation Calibration
Initially, the application asks the user to keep the lights on, and helps him calibrate the robot on 
the lab floor, where we can spot whether the transformation parameters are set correctly.
The application shows the user an image of the floor, and asks him to select the center of 
the camera lens. The user is shown a transformed image, and is asked if it looks good. If the 
answer was yes, the coordinates are serialized to a file, allowing the transformation to use them, 
and saving them for future runs where we might want to use the old configuration.

Neighbors Calibration
The camera, and the transformation, are not perfect, and the image is not perfectly symmetric. 
Thus, after the transformation is calibrated, the user is shown a transformed image, and is 
asked to click on the 12 corners of the 5 relevant cells in the following order:
 

 
This step increases precision and makes sure that the robot is sampling the correct part of the 
image when checking the neighboring cells.
After that, the points are also serialized to a file, for future runs.



Noise handling
Because the robot works in the dark, and the image is black except for some green and red 
dots, the static noise of the camera could have a significant effect.
To reduce this noise, we took a photo in complete darkness, with no light, and deducted this 
photo from every taken snapshot, thus reducing the camera static noise.
 

Limitations
The web-camera
After lighting a dot on the floor for a few seconds, the light could be still seen by humans until 
after 10 minutes. However, it could be seen by the camera we used only in the first minute or 
so.  
The camera we used, was not intended to work with low-light conditions, and it couldn’t identify 
the green light dots after less than a minute.
 
The system can be improved if we use different technique for identifying the green lights. For 
example, using a better camera, or using other types of sensors. To our opinion, a camera with 
a fully controlled integration time will be the best solution. Improving the floor itself or using more 
powerful LEDs to charge it won’t help much since the light is visible to the human eye for tens of 
minutes as is.
 

Video
www.youtu.be/ZkVvyl5Qmww
 
 
Note: Unfortunately, due to the limitations described above, the web camera we used could not 
identify the light traces after less than a minute. Thus, it was not possible to run the robot on a 
large board.

Results
Using a simple and cheap robot with limited sensing and computational  capabilities, we 
succeeded in solving the covering problem with the Ant-like approach, where the robot leaves 
pheromones-like markers on the surface.
 

Conclusions and Suggestions
This project comes as a proof that simple robots with limited computational capabilities, can 
solve complex problems by leaving pheromones like markers on the surface. 
Because of the camera limitation, we couldn’t try the algorithm on a bigger surface, we 
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suggest for a future work, to try using a better camera, preferably camera with a fully controlled 
integration time and trying the algorithm on a bugger surface. Also, because the algorithm is 
modeled as a Finite-State-Machine, all the algorithm can be implemented and ran on the robot 
itself, without using an external computer. 
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